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Is the Cabibbo Angle a Function of the Weinberg
Mixing Parameter?
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The (u, c) quarks and (d, s) quarks are required to have mass matrices of a certain
form. To achieve these mass matrices appropriate Lagrangians are assumed. The
u quark is coupled to the standard Higgs scalar fL. The c quark has a g5 coupling
with fL and fR, where fR is the Higgs scalar corresponding to the left–right
model. The u quark has no g5 coupling. Both u, c quarks have a Yukawa coupling
with a Higgs multiplet. Exactly similar Lagrangians are chosen for the d, s qurks.
Using these mass matrices, the Cabibbo angle is found to be 138 118. The ratio
mC /mS is shown to be approximately 3.1 with the help of the Weinberg mixing
parameter. The mixing angles u2 and u1 determine the Cabibbo angle. The ratio
tan u2/ tan u1 is shown to be a function of the Weinberg mixing parameter.

1. INTRODUCTION

An understanding of fermion masses and mixing angles still eludes us.
The masses and mixing angles are probably clues to extend the standard
model. Any scheme that can account for the observed quark and lepton
masses and mixing angles should be welcome. The first generation of fermions
are the electron e, its neutrino ne; and the u and d quarks. The second
generation consists of the muon m, its neutrino nm, and c and s quarks. The
third generation has also been observed.

The mixing between generations manifests itself in the system of quark
charged weak currents. By convention, the mixing is assigned to the Q 5
21/3 quarks by

Jm
ch(quark) 5 u8Lagmd 8La 5 uL8gmUL(u)U +

L(d ) dLa 5 u8Lagmd 9L (1.1)
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where

d 9L,a 5 Va,b dL,b (a, b 5 1, . . . , n) (1.2)

and

V 5 UL(u)U +
L(d ) (1.3)

Thus the Q 5 21/3 quark states participating in the transitions of the charged
weak current are linear combinations of mass eigenstates. The quark mixing
matrix V, being the product of two unitary matrices, is itself unitary. The
standard model does not predict the content of V. Its matrix elements are
extracted experimentally. For the two-generation case V is called the Cabibbo
matrix. For three generations it is called the Kobayashi–Maskawa matrix.
For n generations V is an n 3 n unitary matrix. It is characterized by n(n 2
1)/2 angles and n(n 1 1)/2 phases. Not all the phases have physical signifi-
cance because 2n 2 1 of them can be removed by “quark rephasing.”

For two generations, there are no complex phases. The only parameter
is commonly taken to be the Cabbibo angle uC and we write

V 5 1 cos uC sin uC

2sin uC cos uC2 (1.4)

Within the two-generation approximation, weak interaction decay data imply
the numerical value sin uC > 0.228 or uC > 138 118.

The aim of this paper is to show that the Cabibbo angle is related to
the Weinberg mixing parameter; the scope of this work is limited to the two
generations of quarks. In Section 2 we derive a general formula for the
Cabibbo angle. Sections 3 and 4 contain mass matrices for u, c and d, s
quarks. In Section 5 the Cabibbo angle is computed. This section also contains
a brief discussion of our result.

2. MASS MATRICES AND THE CABIBBO ANGLE

Let the total number of Higgs multiplets that couple to quarks be at
most two, so that the electroweak group is SU(2)L 3 SU(2)R 3 U(1). Let
there be two generations of quarks. We allow a phase transformation among
various generations of fermions such that

fi 5 eidfi (2.1)

where i is the generation number and d is an arbitrary phase factor. If we
confine consideration only to quarks, Eq. (2.1) shows that each generation
of quarks transforms into itself times a phase factor. All the Higgs fields
must have well-defined properties under the phase symmetry.
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fi 5 eixifi (2.2)

where xi is also arbitrary. Yukawa couplings are allowed if they are invariant
under the phase symmetry. We now construct the mass matrices for quarks
on the above basis of permutation symmetry and phase transformation for
two generations of quarks only.

The above requirements lead surprisingly to a unique nontrivial form
of the mass matrix for two generations. For u, c quarks we have

M1 5 1 0 i (mumc)1/2

2i (mumc)1/2 mc 2 mu 2 (2.3)

where mu and mc are the constituent masses of the u and c quarks, respectively.
The matrix M1M1

+ has eigen values mu
2 and mc

2, and M1M1
+ has the follow-

ing eigenvectors:

1
(mu 1 mc)1/2 1mc

1/2

imu
1/22 and

1
(mu 1 mc)1/2 1 mu

1/2

2imc
1/22

The unitary matrix Uc that diagonalizes the M1M1
+ mass matrix is given by

Uc 5
1

(mu 1 mc)1/2 1mc
1/2 imu

1/2

mu
1/2 2imc

1/22 (2.4)

In an exactly similar fashion the mass matrix for d, s quarks is given by

M2 5 1 0 i (mdms)1/2

2i (mdms)1/2 ms 2 md 2 (2.5)

and M2M2
+ is diagonalized by the unitary matrix Us , where

Us 5
1

(ms 1 md)1/2 1ms
1/2 imd

1/2

md
1/2 2ims

1/22 (2.6)

By definition, V(uc) 5 UcUs
+, and

V(uc) 5 1 cos uC sin uC

2sin uC cos uC2 5 1 cos (u2 2 u1) sin (u2 2 u1)
2sin (u2 2 u1) cos (u2 2 u1)2 (2.7)

In the above

uC 5 u2 2 u1 5 (tan21(md /ms)1/2 2tan21(mu /mc)1/2) (2.8)

3. THE (u, c) MASS MATRIX

Let the Higgs sector consist of the multiplet(1) f(1/2, 1/2*, 0) and f̃ 5
t2f *t2(1/2, 1/2*, 0), such that
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^f & 5 1k 0
0 k82 (3.1)

where k and k8 are real. In addition to the above multiplet, the Higgs sector
has the Higgs scalar fL corresponding to the standard model, and another
Higgs scalar fR corresponding to the left–right model, with

^fL& 5 VL (3.2)

^fR& 5 VR (3.3)

Then, let

2L1 5 h1QLfQR 1 h2QLf̃QR 1 H.c. (3.4)

where

QL 5 1uL

dL2, QR 5 1uR

dR2 (3.5)

From the above Lagrangian we note that the masses of u and d quarks are
given by

mu 5 m1 5 h1k 1 h2k8 (3.6)

and

md 5 m3 5 h1k8 1 h2k (3.7)

The Yukawa coupling constants h1 and h2 are real. In an exactly similar way
we assume that f is also coupled to c and s quarks such that

2L2 5 h3QLfQR 1 h4QLf̃QR 1 H.c. (3.8)

where

QL 5 1cL

sL2 and QR 5 1cR

sR2 (3.9)

At this stage, the masses of c and s are, respectively,

m2 5 h3k 1 h4k8 (3.10)

m4 5 h4k 1 h3k8 (3.11)

The coupling constants h3 and h4 are real.
In addition to the above Lagrangians, the u and c quarks are also

coupled(2) to fL. Before examining this, let us note an important item. Given
a Dirac field c, the Hermitian scalar and pseudoscalar cc and icg5c have
opposite CP and T transformation properties. (In this respect they are unlike
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the vector and axial vector cglc, cglg5c). This is the key to the CP violation
by a Higgs field. The simplest model uses a Higgs field fL and a Lagran-
gian containing

mcc 1 iacg5cfL (3.12)

where a is a real coupling constant. This conserves CP if fL is assigned
CP 5 21. But if spontaneous symmetry breaking gives fL a nonzero VEV,
VL, (3.12), may be written

(m2 1 a2VL
2)1/2c8c8 1 ac8(sin a 1 ig5 cos a)c8fL8 (3.13)

where

fL 5 VL 1 fL8 and c 5 exp(21–2 ig5a)c8 (3.14)

and

tan a 5 aVL/m (3.15)

Vector or axial-vector interactions are unaffected by the transformation from
c to c8. The CP violation is now caused by the exchange of fL8 particles.(3)

To implement the above scheme in the case of u, c quarks the following
Lagrangian is chosen:

2L3 5 m1uu 1 m2cc 2 a1uufL 1 ia0ucfL 2 ia0cufL (3.16)

1 iaLcg5cfL 1 iaRcg5cfR

where a1, a0, aL, and aR are real. The first two terms are the contributions
of Eqs. (3.6) and (3.10). After spontaneous symmetry breaking and due to
the following transformations and restrictions,

c 5 exp(2ig5 a1/2) c8 (3.17)

u 5 exp(2ig5 a2/2) u8 (3.18)

and

m1 5 a1 VL and a1 1 a2 5 0 (3.19)

we can write the Lagrangian L3 in the following way:

2L3 5 0 u8u8 1 ia0VLu8c8 2 ia0VLc8u8

1 [m2
2 1 (aLVL 1 aRVR)2]1/2c8c8 2 (a1 cos a1)u8u8fL8

1 ia0u8c8fL8 2 ia0c8u8fL8 2 i(a1 sin a1)u8g5u8fL8

1 aLc8[ig5 cos a1 1 sin a1]c8fL8

1 aRc8[ig5 cos a1 1 sin a1]c8fR8 (3.20)
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To avoid such constant terms like c8g5c8 in the above Lagrangian we
require that

tan a1 5 (aLVL 1 aRVR)/m2 (3.21)

In addition, a1 1 a2 5 0 ensures the absence of terms like u8g5c8VL and
u8g5c8fL8 and their Hermitian conjugates. The choice m1 5 a1VL is required
to obtain a mass matrix that has the desired form as in Eq. (2.2). So finally
this choice of the Lagrangian along with the constraints leads to the following
mass matrix for the u, c quarks:

(u, c)1 0 ia0VL

2ia0VL [m2
2 1 (aLVL 1 aRVR)2]1/221u

c2 (3.22)

The parameters a0, m2, aL, and aR are free parameters of the model. There
are no restrictions on them. Suppose

[m2
2 1 (aLVL 1 aRVR)2]1/2 5 [md MWLB1(1 2 A1)]1/2 2 m1 (3.23)

and

a0VL 5 [{[m2
2 1 (aLVL 1 aRVR)2]1/2 1 m1} m1]1/2 (3.24)

With this choice the eigenvalues of M1 M1
+ are

mu
2 5 m1

2 (3.25)

mc
2 5 mdMWLB1 (1 2 A1) (3.26)

In obtaining these expressions we have used a result obtained earlier.(2) The
constants B1 and A1 are given by

B1 5
(gV/gA)4

ds

(gV/gA)4
uc

(3.27)

A1 5 [1 2 (gV/gA)4
uc]1/2 (3.28)

Here gV and gA are the vector and axial vector coupling constants of the
particles indicated by the subscripts with the Z-particle of the standard model.
Equation (3.26) along with Eqs. (3.27) and (3.28) for mc

2 can be written
down by just examining a similar expression for me

2 derived in ref. 2. Finally,
using (3.27) and (3.28) in Eq. (3.26), we have

mc
2 5 md MWL

(gV/gA)4
ds

(gV/gA)4
uc
H1 2 F1 2 1gV

gA
2

4

uc

G1/2J (3.29)

4. THE (d, s) MASS MATRIX

We follow an exactly similar procedure in the case of d, s quarks. The
d, s quarks are coupled to fL and fR in the following way:
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2L4 5 m3dd 1 m4ss 2 a2ddfL 1 ib0 ds fL 2 ib0 sd fL

1 ibLsg5s fL 1 ibRsg5s fR (4.1)

In the above a2, b0, bL, and bR are all real. Moreover, m3 and m4 are contribu-
tions of Eqs. (3.7) and (3.11). In addition,

d 5 exp(2i g5 a3/2) d8 (4.2)

s 5 exp(2ig5a4/2) s8 (4.3)

In addition to the above we require that

a3 1 a4 5 0 and m3 5 a2 VL. (4.4)

With these conditions after spontaneous symmetry breaking the Lagrangian
(4.1) may be written as

2L4 5 0 d8d8 1 ib0VL d8s8 2 ib0VL s8d8

1 [m4
2 1 (bLVL 1 bRVR)2]1/2 s8 s8 2 (a2 cos a4)d8 d8 fL8

1 ib0d8s8fL8 2 ib0s8d8 fL8 2 i(a2 sin a4)d8 g5 d8 fL8

1 bLs8[ig5 cos a4 1 sin a4]s8 fL8

1 bRs8[ig5 cos a4 1 sin a4]s8 fR8 (4.5)

Again to avoid s8g5s8 type of terms we require that

tan a4 5 (bLVL 1 bRVR)/m4 (4.6)

The mass matrix M2 for d, s quarks is given by

M2 5 1 0 ib0VL

2ib0VL [m4
2 1 (bL VL 1 bRVR)2]1/22 (4.7)

The parameters b0, bL, bR, and m4 are still free.
With the choice

[m4
2 1 (bLVL 1 bRVR)2]1/2 5 [mu MWLB2(1 2 A2)]1/2 2 m3 (4.8)

and

b0VL 5 [{[m4
2 1 (bLVL 1 bRVR)2]1/2 1 m3}m3]1/2 (4.9)

we have

B2 5
(gV/gA)4

uc

(gV/gA)4
ds

(4.10)
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and

A2 5 [1 2 (gV/gA)4
ds]1/2 (4.11)

We note that

md
2 5 m3

2 (4.12)

and

ms
2 5 mu MWL

(gV/gA)4
uc

(gV/gA)4
ds
H1 2 F1 2 1gV

gA
2

4

ds

G1/2J (4.13)

The resemblance of this expression to Eq. (3.29) should be noticed. Of course
the above expression can also be directly written down by just examining
the expression for me

2 in ref. 2. Here u, d play the same role as the neutrino
does in the case of me

2.

5. CABBIBO ANGLE AND DISCUSSION

In Eqs. (3.29) and (4.13), gv and gA are the vector and axial vector
coupling constants of the particles indicated by the subscripts with the Z
particle of the standard model. Moreover, md and mu are the constituent
masses of down and up quarks. For numerical calculations we assume that

mu ' md 5 0.3 GeV (5.1)

From the standard model prescription we know that

(gv/gA)d
2 5 (gv/gA)s

2 5 (gv/gA)b
2 5 (21 1 4–3 XL)2

(gv/gA)u
2 5 (gv/gA)c

2 5 (gv/gA)t
2 5 (21 1 8–3 XL)2 (5.2)

Here XL 5 sin2uW, where uW is the Weinberg mixing angle. From (3.29) and
(4.13) we observe that mc 5 1.7 GeV and ms 5 0.57 GeV provided MWL 5
80 GeV and XL 5 0.2254.(2)

Therefore,

u2 5 tan21(md /ms)1/2 5 358588 (5.3)

u1 5 tan21(mu /mc)1/2 5 228478, (5.4)

and so the Cabibbo angle is

uC 5 u2 2 u1 5 138118 (5.5)

and



Cabibbo Angle a Function of Weinberg Mixing Parameter? 1627

sin uC 5 0.228 (5.6)

This agrees pretty well with the experimental value noted in the introduction.
Equations (3.29) and (4.13) can be approximated by

2mc
2 ' mdMWL(gv/gA)d

4 (5.7)

and

2ms
2 ' muMWL(gv/gA)u

4 (5.8)

The above expressions yield the ratio

mc

ms
'

(gv/gA)d
2

(gv/gA)u
2 ' 3.1 (5.9)

This ratio depends only on the Weinberg mixing parameter. This ratio is well
known from many experiments. Here the masses are constituent masses.
Equation (5.9) can be compared with experiment. The important point is that
Eq. (5.9) is a prediction based on the standard model.

From the approximate expressions for mc
2 and ms

2 it also follows that

tan u2 ' F 21/2md

(muMWL)1/2 (gv/gA)u
2G1/2

' F (2mu)1/2

(MWL)1/2 (gv/gA)u
2G1/2

(5.10)

and

tan u1 ' F 21/2mu

(mdMWL)1/2 (gv/gA)d
2G1/2

' F (2mu)1/2

(MWL)1/2 (gv/gA)d
2G1/2

(5.11)

From the above we notice that

tan u2

tan u1
' F(gv/gA)d

2

(gv/gA)u
2G1/2

(5.12)

In this paper Lagrangians L3 and L4 are chosen in such a way that the mass
matrices of (u, c) and (d, s) quarks have a desired form. The Lagrangians
contain free parameters which are chosen so as to lead to known expressions
for mc

2 and ms
2. However, these free parameters of the Lagrangians can be

experimentally determined once the Higgs multiplets are discovered. But the
important point is that now the content of the mixing matrix is determined
by the standard model or extensions thereof. Much experimental data exist
on the four-quark model. These data can be used to find the ratio mc /ms and
through it the Weinberg mixing parameter can be evaluated. If it agrees with
the experiment approximately, then the contents of this paper are on a solid
foundation. For the first time relations like (5.9) and (5.12) are obtained
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where the quark mass ratio and mixing angles appear as functions of the
Weinberg mixing parameter.
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